Mitochondria directly influence fertilisation outcome in the pig.
نویسندگان
چکیده
The mitochondrion is explicitly involved in cytoplasmic regulation and is the cell's major generator of ATP. Our aim was to determine whether mitochondria alone could influence fertilisation outcome. In vitro, oocyte competence can be assessed through the presence of glucose-6-phosphate dehydrogenase (G6PD) as indicated by the dye, brilliant cresyl blue (BCB). Using porcine in vitro fertilisation (IVF), we have assessed oocyte maturation, cytoplasmic volume, fertilisation outcome, mitochondrial number as determined by mtDNA copy number, and whether mitochondria are uniformly distributed between blastomeres of each embryo. After staining with BCB, we observed a significant difference in cytoplasmic volume between BCB positive (BCB+) and BCB negative (BCB-) oocytes. There was also a significant difference in mtDNA copy number between fertilised and unfertilised oocytes and unequal mitochondrial segregation between blastomeres during early cleavage stages. Furthermore, we have supplemented BCB- oocytes with mitochondria from maternal relatives and observed a significant difference in fertilisation outcomes following both IVF and intracytoplasmic sperm injection (ICSI) between supplemented, sham-injected and non-treated BCB- oocytes. We have therefore demonstrated a relationship between oocyte maturity, cytoplasmic volume, and fertilisation outcome and mitochondrial content. These data suggest that mitochondrial number is important for fertilisation outcome and embryonic development. Furthermore, a mitochondrial pre-fertilisation threshold may ensure that, as mitochondria are diluted out during post-fertilisation cleavage, there are sufficient copies of mtDNA per blastomere to allow transmission of mtDNA to each cell of the post-implantation embryo after the initiation of mtDNA replication during the early postimplantation stages.
منابع مشابه
A Survey on the Gastrointestinal Parasites of Rabbit and Guinea Pig in a Laboratory Animal House
There is documented evidence that infection in laboratory animals can often influence the outcome of experiments. All infections, apparent or inapparent, are likely to increase biological variability. As a research project concerning the diversity and distribution of parasites of rabbit and guinea pig in a conventional laboratory animal house, about 87 rabbits (from 700 ) and 105 guinea pigs (f...
متن کاملCalcium signals and mitochondria at fertilisation.
At fertilisation, Ca(2+) signals activate embryonic development by stimulating metabolism, exocytosis and endocytosis, cytoskeletal remodelling, meiotic resumption and recruitment of maternal RNAs. Mitochondria present in large number in eggs have long been thought to act as a relay in Ca(2+) signalling at fertilisation. However, only recently have studies on ascidians and mouse proven that spe...
متن کاملInhibition by pyruvate of pig heart mitochondrial glutamate influx.
Cardiac muscle mainly oxidises fatty acids, ketone bodies and pyruvate originating from either glycolysis or glucogenolysis, or from lactate oxidation. The formation of pyruvate and its oxidation by mitochondria are controlled directly by the reoxidation of extra-mitochondrial NADH, which cannot operate directly via the respiratory chain [ 1,2] . This reoxidation probably occurs via the Borst c...
متن کاملFluorescent sperm offer a method for tracking the real-time success of ejaculates when they compete to fertilise eggs
Despite intensive research effort, many uncertainties remain in the field of gamete-level sexual selection, particularly in understanding how sperm from different males interact when competing for fertilisations. Here, we demonstrate the utility of broadcast spawning marine invertebrates for unravelling these mysteries, highlighting their mode of reproduction and, in some species, unusual patte...
متن کاملO-9: The Central Role of Mitochondrial Function in Quality of Human Oocyte
Background: Mitochondria are the most aboudent and small essential organelles found in eukaryotic cells. These are semiautonomous organelles for the production of cellular ATP that through its various biochemical pathways. The primary pathway for ATP production is OXPHOS via the electron transfer chain (ETC) which is encoded by nuclear DNA and mtdna genomes. Mitochondria consist of double stran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Reproduction
دوره 131 2 شماره
صفحات -
تاریخ انتشار 2006